High-throughput shoot phenotyping reveals temporal growth responses to nitrogen and inorganic and organic phosphorus sources in tomato

Author:

Ngo Hue T T12,Cavagnaro Timothy R1,Jewell Nathaniel13,Brien Christopher J13,Berger Bettina13,Watts-Williams Stephanie J14

Affiliation:

1. The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 , Glen Osmond, South Australia , Australia

2. Research Institute for Forest Ecology and Environment, Vietnamese Academy of Forest Sciences , Duc Thang, Tu Liem, Hanoi , Vietnam

3. Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide , Glen Osmond, South Australia , Australia

4. The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide , Glen Osmond, South Australia , Australia

Abstract

Abstract The application of nitrogen (N) and phosphorus (P) fertilizers to soils is required to maintain crop yields, so the sufficient and timely delivery of nutrients to match crop demand is important in fertilizer management. We quantified temporal growth responses of tomato plants with different rates of N and P application using high-throughput shoot phenotyping. The tomato plants were grown in soil that had organic, inorganic or a combination of sources of P incorporated. Additional N was added to each pot at low and high rates, 13 days after planting. At the same rate of total P application, the inorganic P source resulted in greater shoot growth at the early time points. Later on, the plants supplied with organic or mixed P sources grew faster than those that received the inorganic P source, resulting in comparable shoot biomass in all treatments at the time of destructive harvest. The shoot phenotyping data demonstrated that readily available soil P was important for early tomato growth while available N was more important in later stages of vegetative growth. These results suggest that a fertilizer formulation of combined inorganic and organic P sources may be able to sustain rapid and great shoot growth in tomato plants, while also reducing additional N input.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3