Local adaptation in shell shape traits of a brooding chiton with strong population genomic differentiation

Author:

M Salloum Priscila12ORCID,D Lavery Shane13,de Villemereuil Pierre4,W Santure Anna1

Affiliation:

1. School of Biological Sciences, University of Auckland , Auckland , New Zealand

2. Department of Zoology, University of Otago , Dunedin , New Zealand

3. Institute of Marine Science, Leigh Marine Laboratory, University of Auckland , Warkworth , New Zealand

4. Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études | PSL, MNHN, CNRS, Sorbonne Université, Université des Antilles , Paris , France

Abstract

AbstractComparing divergence in quantitative traits and neutral molecular markers, such as QST–FST comparisons, provides a means to distinguish between natural selection and genetic drift as causes of population differentiation in complex polygenic traits. Onithochiton neglectus (Rochebrune, 1881) is a morphologically variable chiton endemic to New Zealand, with populations distributed over a broad latitudinal environmental gradient. In this species, the morphological variants cluster into 2 geographically separated shell shape groups, and the phenotypic variation in shell shape has been hypothesized to be adaptive. Here, we assessed this hypothesis by comparing neutral genomic differentiation between populations (FST) with an index of phenotypic differentiation (PST). We used 7,562 putatively neutral single-nucleotide polymorphisms (SNPs) across 15 populations and 3 clades of O. neglectus throughout New Zealand to infer FST. PST was calculated from 18 shell shape traits and gave highly variable estimates across populations, clades, and shape groups. By systematically comparing PST with FST, we identified evidence of local adaptation in a number of the O. neglectus shell shape traits. This supports the hypothesis that shell shape could be an adaptive trait, potentially correlated with the ability to live and raft in kelp holdfasts.

Funder

Society of Systematic Biologists

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3