Simultaneous integration and modularity underlie the exceptional body shape diversification of characiform fishes

Author:

Burns Michael D12ORCID,Collyer Michael L3ORCID,Sidlauskas Brian L14ORCID

Affiliation:

1. Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University , Corvallis, OR , United States

2. Cornell Lab of Ornithology, Cornell University Museum of Vertebrates , Ithaca, NY , United States

3. Department of Science, Chatham University , Pittsburgh, PA , United States

4. Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC , United States

Abstract

AbstractEvolutionary biology has long striven to understand why some lineages diversify exceptionally while others do not. Most studies have focused on how extrinsic factors can promote differences in diversification dynamics, but a clade’s intrinsic modularity and integration can also catalyze or restrict its evolution. Here, we integrate geometric morphometrics, phylogenetic comparative methods and visualizations of covariance to infer the presence of distinct modules in the body plan of Characiformes, an ecomorphologically diverse fish radiation. Strong covariances reveal a cranial module, and more subtle patterns support a statistically significant subdivision of the postcranium into anterior (precaudal) and posterior (caudal) modules. We uncover substantial covariation among cranial and postcranial landmarks, indicating body-wide evolutionary integration as lineages transition between compressiform and fusiform body shapes. A novel method of matrix subdivision reveals that within- and among-module covariation contributes substantially to the overall eigenstructure of characiform morphospace, and that both phenomena led to biologically important divergence among characiform lineages. Functional integration between the cranium and post-cranial skeleton appears to have allowed lineages to optimize the aspect ratio of their bodies for locomotion, while the capacity for independent change in the head, body and tail likely eased adaptation to diverse dietary and hydrological regimes. These results reinforce a growing consensus that modularity and integration synergize to promote diversification.

Funder

Cornell University

Cornell Lab of Ornithology

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3