Complex cross-incompatibility in morning glories is consistent with a role for mating system in plant speciation

Author:

Rifkin Joanna L12,Ostevik Kate L13ORCID,Rausher Mark D1ORCID

Affiliation:

1. Department of Biology, Duke University , Durham, NC , United States

2. Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , United States

3. Department of Evolution, Ecology, and Organismal Biology, University of California , Riverside , CA , United States

Abstract

Abstract Reproductive isolation between selfing and outcrossing species can arise through diverse mechanisms, some of which are directly associated with differences in mating system. We dissected cross-incompatibility between the highly selfing morning glory Ipomoea lacunosa and its mixed-mating sister species Ipomoea cordatotriloba. We found that cross-incompatibility is complex, with contributions acting both before and after fertilization. We then investigated whether the transition in mating system may have facilitated the evolution of these reproductive barrier components through mismatched floral morphology, differences in reproductive context, or both. We found evidence that morphological mismatch likely contributes to reproductive isolation in at least one cross-direction and that other pollen–pistil interactions are present. We also identified hybrid seed inviability consistent with the predictions of the weak-inbreeder, strong-outbreeder hypotheses, suggesting endosperm misregulation plays an important role in cross-incompatibility. In contrast, we did not find evidence consistent with the prezygotic weak-inbreeder, strong-outbreeder hypothesis. Our study highlights the complexity of reproductive isolation between outcrossing and selfing species and the extent to which evolutionary consequences of mating system transitions can facilitate speciation.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3