Evidence supporting an evolutionary trade-off between material properties and architectural design in Anolis lizard long bones

Author:

Toyama Ken S1ORCID,Tinius Alexander1,Mahler D Luke1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, M5S 3B2 ON , Canada

Abstract

Abstract In biology, “many-to-one mapping” occurs when multiple morphological forms can meet a particular functional demand. Knowledge of this mapping is crucial for understanding how selection on performance shapes the evolution of morphological diversity. Past research has focused primarily on the potential for geometrically alternative morphological designs to produce equivalent performance outcomes. Here, we ask whether the material properties of biological tissues hold similar potential. Through a phylogenetic comparative study of Anolis lizards, we show that the architectural design and mineral density of the femur trade off in a many-to-one functional system, yielding a morphospace featuring parallel isolines in size-relative bending strength. Anole femur evolution has largely tracked a narrow band of strength isolines over phylogenetic timescales, suggesting that geometry and mineral content shape the course of macroevolution through compensatory effects on performance. Despite this conserved evolutionary relationship, insular and continental species evolve strong bones differently, likely reflecting underlying ecological differences. Mainland anoles, which exhibit fast-paced life histories, typically have femora with lower mineralization and thinner walls than island species, which exhibit the opposite strategy. Together, our results reveal an overlooked dimension in the relationship between form and function, expanding our understanding of how many-to-one mapping can shape patterns of phenotypic diversity.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Ontario Trillium Scholarship

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Reference106 articles.

1. Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes;Alfaro,2005

2. Growth rate in island and mainland anoline lizards;Andrews,1976

3. Evolution of life histories: A comparison of Anolis lizards from matched island and mainland habitats;Andrews;Breviora,1979

4. Morphology, performance and fitness;Arnold,1983

5. Constraints on phenotypic evolution;Arnold,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3