Research on a soft-measurement model of gasification temperature based on recurrent neural network

Author:

An Haiquan1ORCID,Fang Xinhui1,Liu Zhen1,Li Ye1

Affiliation:

1. National Institute of Clean-and-Low-Carbon Energy, Beijing, 102209, P. R. China

Abstract

Abstract Gasification temperature measurement is one of the most challenging tasks in an entrained-flow gasifier and often requires indirect calculation using the soft-sensor method, a parameter prediction method using other parameters that are more easily measurable and using correlation equations that are widely accepted in the gasification field for the temperature data. Machine learning is a non-linear prediction method that can adequately act as a soft sensor. Furthermore, the recurrent neural network (RNN) has the function of memorization, which makes it capable of learning how to deal with temporal order. In this paper, the oxygen–coal ratio, CH4 content and CO2 content determined through the process analysis of a 3000-t/d coal-water slurry gasifier are used as input parameters for the soft sensor of the gasification temperature. The RNN model and back propagation (BP) neural network model are then established with training-set data from gasification results. Compared with prediction set data from the gasification results, the RNN model is found to be much better than the BP neural network based on important indexes such as the mean square error (MSE), mean absolute error (MAE) and standard deviation (SD). The results show that the MSE of the prediction set of the RNN model is 6.25°C, the MAE is 10.33°C and the SD is 3.88°C, respectively. The overall accuracy, the average accuracy and the stability effects are well within the accepted ranges for the results as such.

Funder

Science and Technology Innovation Project of CHN Energy

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3