Optimization of sugar production from Durian seeds via alkaline hydrolysis for second-generation bioethanol production

Author:

Chriswardana Theofany Harley1ORCID,Mulyaningsih Yheni1,Mulyaningsih Yhana1,Bahar Aditiya Harjon1,Riayatsyah Teuku Meurah Indra2ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering and Technology, Sampoerna University, Jl. Raya Pasar Minggu, Kav. 16, Jakarta, 12780, Indonesia

2. Mechanical Engineering Department, Institut Teknologi Sumatera, Lampung, 35365, Indonesia

Abstract

Abstract As one way to eliminate the issues found in the preceding generation, feedstock exploration in second-generation bioethanol production remains an issue, especially for a tropical country such as Indonesia. From exotic fruit by-products, durian holds a promising perspective that rests on its abundance, superb carbohydrate content and limited usage until now. This work presents the first-ever utilization of durian seeds for sugar production under optimized conditions through alkaline hydrolysis. A simple form of sugar was extracted by varying four parameters, namely substrate loading, NaOH concentration, hydrolysis time and hydrolysis temperature. Response surface methodology based on the Box-Behnken design was employed to outline the most optimum parameter values. Analysis of variance revealed that the quadratic model fit the data appropriately with the order of significance as substrate loading > hydrolysis time > NaOH concentration > hydrolysis temperature. The optimized conditions for reducing sugar yield, as high as 2.140 g/L, corresponded to <50 g/L substrate loading, 0.522 M NaOH, 60 minutes of hydrolysis time and 80oC hydrolysis temperature. The possible ethanol content of 1.094 g/L was also expected under optimized conditions, demonstrating great potential in second-generation bioethanol production. Second-generation bioethanol production from a non-edible feedstock (durian seeds) is optimized by varying key parameters in the alkaline hydrolysis process, showing high yields of fermentable sugars.

Funder

Centre of Research and Community Services, Sampoerna University

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3