3D revelation of phenotypic variation, evolutionary allometry, and ancestral states of corolla shape: a case study of clade Corytholoma (subtribe Ligeriinae, family Gesneriaceae)

Author:

Hsu Hao-Chun1ORCID,Chou Wen-Chieh1,Kuo Yan-Fu1ORCID

Affiliation:

1. Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan

Abstract

AbstractBackgroundQuantification of corolla shape variations helps biologists to investigate plant diversity and evolution. 3D images capture the genuine structure and provide comprehensive spatial information.ResultsThis study applied X-ray micro-computed tomography (µCT) to acquire 3D structures of the corollas of clade Corytholoma and extracted a set of 415 3D landmarks from each specimen. By applying the geometric morphometrics (GM) to the landmarks, the first 4 principal components (PCs) in the 3D shape and 3D form analyses, respectively, accounted for 87.86% and 96.34% of the total variance. The centroid sizes of the corollas only accounted for 5.46% of the corolla shape variation, suggesting that the evolutionary allometry was weak. The 4 morphological traits corresponding to the 4 shape PCs were defined as tube curvature, lobe area, tube dilation, and lobe recurvation. Tube curvature and tube dilation were strongly associated with the pollination type and contained phylogenetic signals in clade Corytholoma. The landmarks were further used to reconstruct corolla shapes at the ancestral states.ConclusionsWith the integration of µCT imaging into GM, the proposed approach boosted the precision in quantifying corolla traits and improved the understanding of the morphological traits corresponding to the pollination type, impact of size on shape variation, and evolution of corolla shape in clade Corytholoma.

Funder

National Science Council

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3