Efficient real-time selective genome sequencing on resource-constrained devices

Author:

Shih Po Jui1ORCID,Saadat Hassaan2ORCID,Parameswaran Sri3ORCID,Gamaarachchi Hasindu145ORCID

Affiliation:

1. School of Computer Science and Engineering , UNSW Sydney, Sydney, NSW 2052 , Australia

2. School of Electrical Engineering and Telecommunications , UNSW Sydney, Sydney, NSW 2052 , Australia

3. School of Electrical and Information Engineering, University of Sydney , Sydney, NSW 2006 , Australia

4. Genomics Pillar, Garvan Institute of Medical Research , Sydney, NSW 2010, Australia

5. Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children’s Research Institute , Sydney 2010 , Australia

Abstract

Abstract Background Third-generation nanopore sequencers offer selective sequencing or “Read Until” that allows genomic reads to be analyzed in real time and abandoned halfway if not belonging to a genomic region of “interest.” This selective sequencing opens the door to important applications such as rapid and low-cost genetic tests. The latency in analyzing should be as low as possible for selective sequencing to be effective so that unnecessary reads can be rejected as early as possible. However, existing methods that employ a subsequence dynamic time warping (sDTW) algorithm for this problem are too computationally intensive that a massive workstation with dozens of CPU cores still struggles to keep up with the data rate of a mobile phone–sized MinION sequencer. Results In this article, we present Hardware Accelerated Read Until (HARU), a resource-efficient hardware–software codesign-based method that exploits a low-cost and portable heterogeneous multiprocessor system-on-chip platform with on-chip field-programmable gate arrays (FPGA) to accelerate the sDTW-based Read Until algorithm. Experimental results show that HARU on a Xilinx FPGA embedded with a 4-core ARM processor is around 2.5× faster than a highly optimized multithreaded software version (around 85× faster than the existing unoptimized multithreaded software) running on a sophisticated server with a 36-core Intel Xeon processor for a SARS-CoV-2 dataset. The energy consumption of HARU is 2 orders of magnitudes lower than the same application executing on the 36-core server. Conclusions HARU demonstrates that nanopore selective sequencing is possible on resource-constrained devices through rigorous hardware–software optimizations. The source code for the HARU sDTW module is available as open source at https://github.com/beebdev/HARU, and an example application that uses HARU is at https://github.com/beebdev/sigfish-haru.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3