simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods

Author:

Kanduri Chakravarthi12ORCID,Scheffer Lonneke1ORCID,Pavlović Milena12ORCID,Rand Knut Dagestad1ORCID,Chernigovskaya Maria3ORCID,Pirvandy Oz4ORCID,Yaari Gur4ORCID,Greiff Victor3ORCID,Sandve Geir K12ORCID

Affiliation:

1. Centre for Bioinformatics, Department of Informatics, University of Oslo , 0373 Oslo, Norway

2. UiORealArt Convergence Environment, University of Oslo , 0373 Oslo, Norway

3. Department of Immunology and Oslo University Hospital, University of Oslo , 0373 Oslo, Norway

4. Faculty of Engineering, Bar-Ilan University , 5290002, Israel

Abstract

Abstract Background Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. Results We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state–associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. Conclusions This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.

Funder

Leona M. and Harry B. Helmsley Charitable Trust

Horizon 2020 Framework Programme

Norwegian Cancer Society Grant

Research Council of Norway projects

Research Council of Norway IKTPLUSS project

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3