Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data

Author:

Shah Zafran Hussain1ORCID,Müller Marcel2ORCID,Hübner Wolfgang2ORCID,Wang Tung-Cheng23,Telman Daniel1,Huser Thomas2ORCID,Schenck Wolfram1ORCID

Affiliation:

1. Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts , 33619 Bielefeld , Germany

2. Faculty of Physics, Bielefeld University , 33615 Bielefeld , Germany

3. Leica Microsystems CMS GmbH , 68165 Mannheim , Germany

Abstract

Abstract Background Convolutional neural network (CNN)–based methods have shown excellent performance in denoising and reconstruction of super-resolved structured illumination microscopy (SR-SIM) data. Therefore, CNN-based architectures have been the focus of existing studies. However, Swin Transformer, an alternative and recently proposed deep learning–based image restoration architecture, has not been fully investigated for denoising SR-SIM images. Furthermore, it has not been fully explored how well transfer learning strategies work for denoising SR-SIM images with different noise characteristics and recorded cell structures for these different types of deep learning–based methods. Currently, the scarcity of publicly available SR-SIM datasets limits the exploration of the performance and generalization capabilities of deep learning methods. Results In this work, we present SwinT-fairSIM, a novel method based on the Swin Transformer for restoring SR-SIM images with a low signal-to-noise ratio. The experimental results show that SwinT-fairSIM outperforms previous CNN-based denoising methods. Furthermore, as a second contribution, two types of transfer learning—namely, direct transfer and fine-tuning—were benchmarked in combination with SwinT-fairSIM and CNN-based methods for denoising SR-SIM data. Direct transfer did not prove to be a viable strategy, but fine-tuning produced results comparable to conventional training from scratch while saving computational time and potentially reducing the amount of training data required. As a third contribution, we publish four datasets of raw SIM images and already reconstructed SR-SIM images. These datasets cover two different types of cell structures, tubulin filaments and vesicle structures. Different noise levels are available for the tubulin filaments. Conclusion The SwinT-fairSIM method is well suited for denoising SR-SIM images. By fine-tuning, already trained models can be easily adapted to different noise characteristics and cell structures. Furthermore, the provided datasets are structured in a way that the research community can readily use them for research on denoising, super-resolution, and transfer learning strategies.

Funder

Horizon 2020

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3