Euler characteristic curves and profiles: a stable shape invariant for big data problems

Author:

Dłotko Paweł1ORCID,Gurnari Davide1ORCID

Affiliation:

1. Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences , Warsaw, 00-656 , Poland

Abstract

Abstract Tools of topological data analysis provide stable summaries encapsulating the shape of the considered data. Persistent homology, the most standard and well-studied data summary, suffers a number of limitations; its computations are hard to distribute, and it is hard to generalize to multifiltrations and is computationally prohibitive for big datasets. In this article, we study the concept of Euler characteristics curves for 1-parameter filtrations and Euler characteristic profiles for multiparameter filtrations. While being a weaker invariant in one dimension, we show that Euler characteristic–based approaches do not possess some handicaps of persistent homology; we show efficient algorithms to compute them in a distributed way, their generalization to multifiltrations, and practical applicability for big data problems. In addition, we show that the Euler curves and profiles enjoy a certain type of stability, which makes them robust tools for data analysis. Lastly, to show their practical applicability, multiple use cases are considered.

Funder

Max Planck Society

Narodowym Centrum Nauki

Bundesministerium für Bildung und Forschung

University of Warsaw

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference37 articles.

1. Topological persistence and simplification;Edelsbrunner;Discrete Comput Geometry,2002

2. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition;Singh,2007

3. Computational Topology: An Introduction;Edelsbrunner,2022

4. Quantifying similarity of pore-geometry in nanoporous materials;Lee;Nat Commun,2017

5. Topological microstructure analysis using persistence landscapes;Dłotko;Phys D Nonl Phen,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3