Fcirc: A comprehensive pipeline for the exploration of fusion linear and circular RNAs

Author:

Cai Zhaoqing1,Xue Hongzhang21,Xu Yue1,Köhler Jens3,Cheng Xiaojie1,Dai Yao1,Zheng Jie1,Wang Haiyun1ORCID

Affiliation:

1. School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China

2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

3. Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA

Abstract

Abstract Background In cancer cells, fusion genes can produce linear and chimeric fusion-circular RNAs (f-circRNAs), which are functional in gene expression regulation and implicated in malignant transformation, cancer progression, and therapeutic resistance. For specific cancers, proteins encoded by fusion transcripts have been identified as innovative therapeutic targets (e.g., EML4-ALK). Even though RNA sequencing (RNA-Seq) technologies combined with existing bioinformatics approaches have enabled researchers to systematically identify fusion transcripts, specifically detecting f-circRNAs in cells remains challenging owing to their general sparsity and low abundance in cancer cells but also owing to imperfect computational methods. Results We developed the Python-based workflow “Fcirc” to identify fusion linear and f-circRNAs from RNA-Seq data with high specificity. We applied Fcirc to 3 different types of RNA-Seq data scenarios: (i) actual synthetic spike-in RNA-Seq data, (ii) simulated RNA-Seq data, and (iii) actual cancer cell–derived RNA-Seq data. Fcirc showed significant advantages over existing methods regarding both detection accuracy (i.e., precision, recall, F-measure) and computing performance (i.e., lower runtimes). Conclusion Fcirc is a powerful and comprehensive Python-based pipeline to identify linear and circular RNA transcripts from known fusion events in RNA-Seq datasets with higher accuracy and shorter computing times compared with previously published algorithms. Fcirc empowers the research community to study the biology of fusion RNAs in cancer more effectively.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

German Cancer Aid Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3