DeepPod: a convolutional neural network based quantification of fruit number in Arabidopsis

Author:

Hamidinekoo Azam1ORCID,Garzón-Martínez Gina A2,Ghahremani Morteza12,Corke Fiona M K2,Zwiggelaar Reyer1,Doonan John H2ORCID,Lu Chuan1ORCID

Affiliation:

1. Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK

2. National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK

Abstract

AbstractBackgroundHigh-throughput phenotyping based on non-destructive imaging has great potential in plant biology and breeding programs. However, efficient feature extraction and quantification from image data remains a bottleneck that needs to be addressed. Advances in sensor technology have led to the increasing use of imaging to monitor and measure a range of plants including the model Arabidopsis thaliana. These extensive datasets contain diverse trait information, but feature extraction is often still implemented using approaches requiring substantial manual input.ResultsThe computational detection and segmentation of individual fruits from images is a challenging task, for which we have developed DeepPod, a patch-based 2-phase deep learning framework. The associated manual annotation task is simple and cost-effective without the need for detailed segmentation or bounding boxes. Convolutional neural networks (CNNs) are used for classifying different parts of the plant inflorescence, including the tip, base, and body of the siliques and the stem inflorescence. In a post-processing step, different parts of the same silique are joined together for silique detection and localization, whilst taking into account possible overlapping among the siliques. The proposed framework is further validated on a separate test dataset of 2,408 images. Comparisons of the CNN-based prediction with manual counting (R2 = 0.90) showed the desired capability of methods for estimating silique number.ConclusionsThe DeepPod framework provides a rapid and accurate estimate of fruit number in a model system widely used by biologists to investigate many fundemental processes underlying growth and reproduction

Funder

Biotechnology and Biological Sciences Research Council

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3