DeepPod: a convolutional neural network based quantification of fruit number in Arabidopsis
Author:
Affiliation:
1. Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK
2. National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK
Abstract
Funder
Biotechnology and Biological Sciences Research Council
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Computer Science Applications,Health Informatics
Link
http://academic.oup.com/gigascience/article-pdf/9/3/giaa012/32783056/giaa012.pdf
Reference53 articles.
1. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis;Chen;Plant Cell,2014
2. Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana;Vasseur;Plant Methods,2018
3. Phenomics–technologies to relieve the phenotyping bottleneck;Furbank;Trends Plant Sci,2011
4. Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton;Pauli;G3 (Bethesda),2016
5. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field;Shakoor;Curr Opin Plant Biol,2017
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants;Frontiers in Bioscience-Landmark;2024-01-17
2. Implementing deep‐learning techniques for accurate fruit disease identification;Plant Pathology;2023-07-25
3. Integrated Phenomics and Genomics reveals genetic loci associated with inflorescence growth inBrassica napus;2023-04-02
4. Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review;Agriculture;2022-07-15
5. High‐throughput measurement of plant fitness traits with an object detection method using Faster R‐CNN;New Phytologist;2022-03-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3