Interpretable and accurate prediction models for metagenomics data

Author:

Prifti Edi12ORCID,Chevaleyre Yann3,Hanczar Blaise4,Belda Eugeni2,Danchin Antoine5,Clément Karine67,Zucker Jean-Daniel126ORCID

Affiliation:

1. IRD, Sorbonne University, UMMISCO, 32 Avenue Henri Varagnat, F-93143 Bondy, France

2. Institute of Cardiometabolism and Nutrition, ICAN, Integromics, 91 Boulevard de l'Hopital, F-75013, Paris, France

3. Paris-Dauphine University, PSL Research University, CNRS, UMR 7243, LAMSADE, place du Mal. de Lattre de Tassigny, F-75016, Paris, France

4. IBISC, University Paris-Saclay, University Evry, Evry, 23 Boulevard de France, F-91034, France

5. Institut Cochin INSERM U1016−CNRS UMR8104−Université Paris Descartes, 24 Rue du Faubourg Saint-Jacques, F-75014, Paris, France

6. Sorbonne University, INSERM, Nutrition and Obesities; Systemic Approach Research Unit (NutriOmics), 91 Boulevard de l'Hopital, F-75013, Paris, France

7. Assistance Publique-Hôpitaux de Paris, Nutrition Department, CRNH Ile de France, Pitié-Salpêtrière Hospital, 91 Boulevard de l'Hopital, F-75013, Paris, France

Abstract

Abstract Background Microbiome biomarker discovery for patient diagnosis, prognosis, and risk evaluation is attracting broad interest. Selected groups of microbial features provide signatures that characterize host disease states such as cancer or cardio-metabolic diseases. Yet, the current predictive models stemming from machine learning still behave as black boxes and seldom generalize well. Their interpretation is challenging for physicians and biologists, which makes them difficult to trust and use routinely in the physician–patient decision-making process. Novel methods that provide interpretability and biological insight are needed. Here, we introduce “predomics”, an original machine learning approach inspired by microbial ecosystem interactions that is tailored for metagenomics data. It discovers accurate predictive signatures and provides unprecedented interpretability. The decision provided by the predictive model is based on a simple, yet powerful score computed by adding, subtracting, or dividing cumulative abundance of microbiome measurements. Results Tested on >100 datasets, we demonstrate that predomics models are simple and highly interpretable. Even with such simplicity, they are at least as accurate as state-of-the-art methods. The family of best models, discovered during the learning process, offers the ability to distil biological information and to decipher the predictability signatures of the studied condition. In a proof-of-concept experiment, we successfully predicted body corpulence and metabolic improvement after bariatric surgery using pre-surgery microbiome data. Conclusions Predomics is a new algorithm that helps in providing reliable and trustworthy diagnostic decisions in the microbiome field. Predomics is in accord with societal and legal requirements that plead for an explainable artificial intelligence approach in the medical field.

Funder

French National Agency through the national program Investissements d'Avenir

Seventh Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3