A research parasite's perspective on establishing a baseline to avoid errors in secondary analyses

Author:

Raman Ayush T12ORCID

Affiliation:

1. Broad Institute of MIT and Harvard, 75 Ames St, Cambridge, MA 02142, USA

2. Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

Abstract

Abstract To enhance reproducibility in scientific research, more and more datasets are becoming publicly available so that researchers can perform secondary analyses to investigate questions the original scientists had not posited. This increases the return on investment for the NIH and other funding bodies. These datasets, however, are not perfect, and a better understanding of the assumptions that shaped them is required. The 2020 Junior Research Parasite Award recognized our work that showed that the signal-to-noise ratio in a particular dataset had not been investigated, leading to an erroneous conclusion in the original research. In this commentary, I share the process that led to the identification of the problem and hopefully provide useful lessons for other research parasites.

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3