DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach

Author:

Wu Shufang12,Fang Zhencheng12,Tan Jie12,Li Mo3,Wang Chunhui3,Guo Qian124,Xu Congmin124,Jiang Xiaoqing12,Zhu Huaiqiu1245

Affiliation:

1. State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China

2. Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China

3. Peking University-Tsinghua University - National Institute of Biological Sciences (PTN) joint PhD program, School of Life Sciences, Peking University, Beijing 100871, Beijing, China

4. Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA 30332, Atlanta, USA

5. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, Beijing, China

Abstract

Abstract Background Prokaryotic viruses referred to as phages can be divided into virulent and temperate phages. Distinguishing virulent and temperate phage–derived sequences in metavirome data is important for elucidating their different roles in interactions with bacterial hosts and regulation of microbial communities. However, there is no experimental or computational approach to effectively classify their sequences in culture-independent metavirome. We present a new computational method, DeePhage, which can directly and rapidly judge each read or contig as a virulent or temperate phage–derived fragment. Findings DeePhage uses a “one-hot” encoding form to represent DNA sequences in detail. Sequence signatures are detected via a convolutional neural network to obtain valuable local features. The accuracy of DeePhage on 5-fold cross-validation reaches as high as 89%, nearly 10% and 30% higher than that of 2 similar tools, PhagePred and PHACTS. On real metavirome, DeePhage correctly predicts the highest proportion of contigs when using BLAST as annotation, without apparent preferences. Besides, DeePhage reduces running time vs PhagePred and PHACTS by 245 and 810 times, respectively, under the same computational configuration. By direct detection of the temperate viral fragments from metagenome and metavirome, we furthermore propose a new strategy to explore phage transformations in the microbial community. The ability to detect such transformations provides us a new insight into the potential treatment for human disease. Conclusions DeePhage is a novel tool developed to rapidly and efficiently identify 2 kinds of phage fragments especially for metagenomics analysis. DeePhage is freely available via http://cqb.pku.edu.cn/ZhuLab/DeePhage or https://github.com/shufangwu/DeePhage.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3