MBGC: Multiple Bacteria Genome Compressor

Author:

Grabowski Szymon1ORCID,Kowalski Tomasz M1ORCID

Affiliation:

1. Institute of Applied Computer Science, Lodz University of Technology, ul. Stefanowskiego 18, 90-537 Lodz, Poland

Abstract

Abstract Background Genomes within the same species reveal large similarity, exploited by specialized multiple genome compressors. The existing algorithms and tools are however targeted at large, e.g., mammalian, genomes, and their performance on bacteria strains is rather moderate. Results In this work, we propose MBGC, a specialized genome compressor making use of specific redundancy of bacterial genomes. Its characteristic features are finding both direct and reverse-complemented LZ-matches, as well as a careful management of a reference buffer in a multi-threaded implementation. Our tool is not only compression efficient but also fast. On a collection of 168,311 bacterial genomes, totalling 587 GB, we achieve a compression ratio of approximately a factor of 1,265 and compression (respectively decompression) speed of ∼1,580 MB/s (respectively 780 MB/s) using 8 hardware threads, on a computer with a 14-core/28-thread CPU and a fast SSD, being almost 3 times more succinct and >6 times faster in the compression than the next best competitor.

Funder

Lodz University of Technology

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference25 articles.

1. Compression of DNA sequences;Grumbach;Proc. Data Compression Conference,1993

2. A simple statistical algorithm for biological sequence compression;Duc Cao;Proc. Data Compression Conference,2007

3. Sequence Compression Benchmark (SCB) database—A comprehensive evaluation of reference-free compressors for FASTA-formatted sequences;Kryukov;Gigascience,2020

4. Human genomes as email attachments;Christley;Bioinformatics,2009

5. The human genome contracts again;Pavlichin;Bioinformatics,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3