Scalable biclustering — the future of big data exploration?

Author:

Orzechowski Patryk12ORCID,Boryczko Krzysztof3ORCID,Moore Jason H1ORCID

Affiliation:

1. Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA

2. Department of Automatics and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, Kraków 30-059, Poland

3. Department of Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, Kraków 30-059, Poland

Abstract

Abstract Biclustering is a technique of discovering local similarities within data. For many years the complexity of the methods and parallelization issues limited its application to big data problems. With the development of novel scalable methods, biclustering has finally started to close this gap. In this paper we discuss the caveats of biclustering and present its current challenges and guidelines for practitioners. We also try to explain why biclustering may soon become one of the standards for big data analytics.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference10 articles.

1. Applied Biclustering Methods for Big and High-Dimensional Data Using R

2. Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets;Yoon;Nucleic Acids Res,2019

3. EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery;Orzechowski;Bioinformatics,2018

4. EBIC: an open source software for high-dimensional and big data analyses;Orzechowski;Bioinformatics,2019

5. Bioinformatics from a big data perspective: meeting the challenge;Gomez-Vela;5th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2017, Granada, Spain, 2017,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3