To assemble or not to resemble—A validated Comparative Metatranscriptomics Workflow (CoMW)

Author:

Anwar Muhammad Zohaib1ORCID,Lanzen Anders23,Bang-Andreasen Toke14,Jacobsen Carsten Suhr1ORCID

Affiliation:

1. Department of Environmental Science, Aarhus University RISØ Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark

2. AZTI, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Basque Country, Spain

3. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

4. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark

Abstract

Abstract Background Metatranscriptomics has been used widely for investigation and quantification of microbial communities’ activity in response to external stimuli. By assessing the genes expressed, metatranscriptomics provides an understanding of the interactions between different major functional guilds and the environment. Here, we present a de novo assembly-based Comparative Metatranscriptomics Workflow (CoMW) implemented in a modular, reproducible structure. Metatranscriptomics typically uses short sequence reads, which can either be directly aligned to external reference databases (“assembly-free approach”) or first assembled into contigs before alignment (“assembly-based approach”). We also compare CoMW (assembly-based implementation) with an assembly-free alternative workflow, using simulated and real-world metatranscriptomes from Arctic and temperate terrestrial environments. We evaluate their accuracy in precision and recall using generic and specialized hierarchical protein databases. Results CoMW provided significantly fewer false-positive results, resulting in more precise identification and quantification of functional genes in metatranscriptomes. Using the comprehensive database M5nr, the assembly-based approach identified genes with only 0.6% false-positive results at thresholds ranging from inclusive to stringent compared with the assembly-free approach, which yielded up to 15% false-positive results. Using specialized databases (carbohydrate-active enzyme and nitrogen cycle), the assembly-based approach identified and quantified genes with 3–5 times fewer false-positive results. We also evaluated the impact of both approaches on real-world datasets. Conclusions We present an open source de novo assembly-based CoMW. Our benchmarking findings support assembling short reads into contigs before alignment to a reference database because this provides higher precision and minimizes false-positive results.

Funder

European Commission

University of Copenhagen

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3