Affiliation:
1. Center for Translational Neuro- and Behavioral Sciences, Institute for Diagnostic and Interventional Radiology and Neuroradiology, Center University Hospital Essen, Essen , D-45147, Germany
Abstract
Abstract
Background
The lack of nonparametric statistical tests for confounding bias significantly hampers the development of robust, valid, and generalizable predictive models in many fields of research. Here I propose the partial confounder test, which, for a given confounder variable, probes the null hypotheses of the model being unconfounded.
Results
The test provides a strict control for type I errors and high statistical power, even for nonnormally and nonlinearly dependent predictions, often seen in machine learning. Applying the proposed test on models trained on large-scale functional brain connectivity data (N= 1,865) (i) reveals previously unreported confounders and (ii) shows that state-of-the-art confound mitigation approaches may fail preventing confounder bias in several cases.
Conclusions
The proposed test (implemented in the package mlconfound; https://mlconfound.readthedocs.io) can aid the assessment and improvement of the generalizability and validity of predictive models and, thereby, fosters the development of clinically useful machine learning biomarkers.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Computer Science Applications,Health Informatics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献