A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation

Author:

Feng Shiqian12ORCID,Opit George3,Deng Wenxin12,Stejskal Vaclav45ORCID,Li Zhihong12ORCID

Affiliation:

1. Department of Plant Biosecurity, College of Plant Protection, China Agricultural University , Beijing 100193, China

2. Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs , Beijing 100193, China

3. Department of Entomology and Plant Pathology, Oklahoma State University , Oklahoma 74078, Stillwater, USA

4. Crop Research Institute , Drnovská 507, 161 06 Prague 6, Czech Republic

5. Faculty of Agrobiology , Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00 Prague, Czech Republic

Abstract

Abstract Background Booklice (psocids) in the genus Liposcelis (Psocoptera: Liposcelididae) are a group of important storage pests, found in libraries, grain storages, and food-processing facilities. Booklice are able to survive under heat treatment and typically possess high resistance to common fumigant insecticides, hence posing a threat to storage security worldwide. Results We assembled the genome of the booklouse, L. brunnea, the first genome reported in Psocoptera, using PacBio long-read sequencing, Illumina sequencing, and chromatin conformation capture (Hi-C) methods. After assembly, polishing, haplotype purging, and Hi-C scaffolding, we obtained 9 linkage groups (174.1 Mb in total) ranging from 12.1 Mb to 27.6 Mb (N50: 19.7 Mb), with the BUSCO completeness at 98.9%. In total, 15,543 genes were predicted by the Maker pipeline. Gene family analyses indicated the sensing-related gene families (OBP and OR) and the resistance-related gene families (ABC, EST, GST, UGT, and P450) expanded significantly in L. brunnea compared with those of their closest relatives (2 parasitic lice). Based on transcriptomic analysis, we found that the CYP4 subfamily from the P450 gene family functioned during phosphine fumigation; HSP genes, particularly those from the HSP70 subfamily, were upregulated significantly under high temperatures. Conclusions We present a chromosome-level genome assembly of L. brunnea, the first genome reported for the order Psocoptera. Our analyses provide new insights into the gene family evolution of the louse clade and the transcriptomic responses of booklice to environmental stresses.

Funder

Key Research Program of International Collaboration between China and Czech Republic

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3