Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population

Author:

Çilingir F Gözde1ORCID,A'Bear Luke2,Hansen Dennis34ORCID,Davis Leyla R5,Bunbury Nancy26,Ozgul Arpat1ORCID,Croll Daniel7ORCID,Grossen Christine1ORCID

Affiliation:

1. Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich 8057, Switzerland

2. Seychelles Islands Foundation , Victoria, Republic of Seychelles

3. Zoological Museum, University of Zurich , Zurich 8006, Switzerland

4. Indian Ocean Tortoise Alliance , Ile Cerf, Victoria, Republic of Seychelles

5. Zoo Zürich , Zurich 8044, Switzerland

6. Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter , Penryn, Cornwall, TR10 9FE, UK

7. Institute of Biology, University of Neuchâtel , Neuchâtel 2000, Switzerland

Abstract

AbstractBackgroundThe Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species’ exceptionally long life span.FindingsWe produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing–assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identified the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored.ConclusionsWe establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.

Funder

University of Zürich

National Science Foundation

University of Zurich Internal Funds

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference135 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3