Cancer-associated fibroblasts-derived exosome-mediated transfer of miR-345-5p promotes the progression of colorectal cancer by targeting CDKN1A

Author:

Shi Weikun1ORCID,Liu Yuxin1,Qiu Xiaoyuan1,Yang Ling2,Lin Guole1

Affiliation:

1. Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100730 , China

2. Beijing GenePlus Clinical Laboratory Co., Ltd. , Beijing 102206 , China

Abstract

Abstract Colorectal cancer (CRC) is the second leading cause of cancer-induced death in the world. Cancer-associated fibroblasts (CAFs) released exosomes that contributed to cancer progression. This research was carried out to study the influence of CRC-associated fibroblasts-derived exosomes on the phenotype of CRC cells and the underlying mechanism. CAFs-derived exosomes (CAFs-exo) and normal fibroblasts (NFs)-derived exosomes (NFs-exo) were recognized by transmission electronic microscopy, nanoparticle tracking analysis and western blot analysis. Cell counting kit-8, flow cytometry analysis, colony formation assay, Transwell, qRT-PCR, immunofluorescence, immunohistochemistry staining and xenografts model were carried out to proceed with function studies in vitro and in vivo. The results showed that CAFs-exo induced cell proliferation, migration and invasion, while NFs-exo did not influence the tumor biological properties of CRC cells. Using qRT-PCR, miR-345-5p was observed to be a notably up-regulated miRNA in CAFs-exo compared to NFs-exo. CAFs-exo could mediate the transfer of miR-345-5p to CRC cells, and downregulation of miR-345-5p in CAFs notably reversed the pro-tumoral effect of CAFs-exo on CRC cells. Based on online prediction database, CDKN1A was proved as a direct downstream target of miR-345-5p in CRC cells, which was lowly expressed and negatively associated with miR-345-5p in CRC tumors. Furthermore, miR-345-5p upregulation-mediated tumor biological behaviors were abrogated by exogenous CDKN1A. In CRC cells-beared tumor xenograft, CAFs-exo administration promoted tumor growth and decreased CDKN1A expression, whereas miR-345-5p inhibition reversed these effects. The present study revealed that by interacting with CDKN1A, CAF-derived exosomal miR-345-5p promotes CRC progression and metastasis.

Funder

Beijing Major Science and Technology Projects

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3