TMEM16A inhibits autophagy and promotes the invasion of hypopharyngeal squamous cell carcinoma through mTOR pathway

Author:

Yang Xin123,Cui Limei123,Liu Zhonglu123,Li Yumei123,Wu Xinxin123,Tian Ruxian123,Jia Chuanliang123,Ren Chao1234ORCID,Mou Yakui123,Song Xicheng123ORCID

Affiliation:

1. Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University , Yantai, Shandong Province , China

2. Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases , Yantai, Shandong Province , China

3. Yantai Key Laboratory of Otorhinolaryngologic Diseases , Yantai, Shandong Province , China

4. Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital , Yantai, Shandong Province , China

Abstract

Abstract Previous studies have indicated that transmembrane protein 16A (TMEM16A) plays a crucial role in the pathogenesis and progression of various tumors by influencing multiple signaling pathways. However, the role of TMEM16A in regulating autophagy via the mammalian target of rapamycin (mTOR) pathway and its impact on the development of hypopharyngeal squamous cell carcinoma (HSCC) remain unclear. Immunohistochemistry and western blotting were used to assess the expression of TMEM16A in HSCC tissues and metastatic lymph nodes. Manipulation of TMEM16A expression levels was achieved in the FaDu cell line through overexpression or knockdown, followed by assessment of its biological effects using cell colony formation, wound healing, transwell and invasion assays. Additionally, apoptosis and autophagy-related proteins, as well as autophagosome formation, were evaluated through western blotting, transmission electron microscopy and immunofluorescence following TMEM16A knockdown or overexpression in FaDu cells. Our study revealed significantly elevated levels of TMEM16A in both HSCC tissues and metastatic lymph nodes compared with normal tissues. In vitro experiments demonstrated that silencing TMEM16A led to a notable suppression of HSCC cell proliferation, invasion and migration. Furthermore, TMEM16A silencing effectively inhibited tumor growth in xenografted mice. Subsequent investigations indicated that knockdown of TMEM16A in HSCC cells could suppress mTOR activation, thereby triggering autophagic cell death by upregulating sequestosome-1 (SQSTM1/P62) and microtubule-associated protein light chain 3 II (LC3II). This study highlights the crucial role of TMEM16A in modulating autophagy in HSCC, suggesting its potential as a therapeutic target for the treatment of this malignancy.

Funder

Natural Science Foundation of Shandong Province

Taishan Scholars Project

Medical and Health Technology Project of Shandong Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3