TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer

Author:

Peeney David1,Jensen Sandra M1,Castro Nadia P2,Kumar Sarvesh1,Noonan Silvia1,Handler Chenchen1,Kuznetsov Alex1,Shih Joanna3,Tran Andy D4,Salomon David S2,Stetler-Stevenson William G1

Affiliation:

1. Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

2. Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA

3. Biostatistics Branch, National Cancer Institute, Rockville, MD, USA

4. Confocal Core Facility, National Cancer Institute, Bethesda, MD, USA

Abstract

Abstract Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36–50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.

Funder

National Cancer Institute

Center for Cancer Research Intramural Research Program

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3