A comprehensive in vivo and mathematic modeling-based kinetic characterization for aspirin-induced chemoprevention in colorectal cancer

Author:

Shimura Tadanobu1,Toden Shusuke1,Komarova Natalia L2,Boland Crichard1,Wodarz Dominik3,Goel Ajay14ORCID

Affiliation:

1. Center for Gastrointestinal Research, Center from Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA

2. Department of Mathematics, University of California, Irvine, CA, USA

3. Department of Population Health and Disease Prevention Program in Public Health Susan and Henry Samueli College of Health Sciences and Department of Mathematics, University of California, Irvine, CA, USA

4. Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA

Abstract

Abstract Accumulating evidence suggests that aspirin has anti-tumorigenic properties in colorectal cancer (CRC). Herein, we undertook a comprehensive and systematic series of in vivo animal experiments followed by 3D-mathematical modeling to determine the kinetics of aspirin’s anti-cancer effects on CRC growth. In this study, CRC xenografts were generated using four CRC cell lines with and without PIK3CA mutations and microsatellite instability, and the animals were administered with various aspirin doses (0, 15, 50, and 100 mg/kg) for 2 weeks. Cell proliferation, apoptosis and protein expression were evaluated, followed by 3D-mathematical modeling analysis to estimate cellular division and death rates and their impact on aspirin-mediated changes on tumor growth. We observed that aspirin resulted in a dose-dependent decrease in the cell division rate, and a concomitant increase in the cell death rates in xenografts from all cell lines. Aspirin significantly inhibited cell proliferation as measured by Ki67 staining (P < 0.05–0.01). The negative effect of aspirin on the rate of tumor cell proliferation was more significant in xenograft tumors derived from PIK3CA mutant versus wild-type cells. A computational model of 3D-tumor growth suggests that the growth inhibitory effect of aspirin on the tumor growth kinetics is due to a reduction of tumor colony formation, and that this effect is sufficiently strong to be an important contributor to the reduction of CRC incidence in aspirin-treated patients. In conclusion, we provide a detailed kinetics of aspirin-mediated inhibition of tumor cell proliferation, which support the epidemiological data for the observed protective effect of aspirin in CRC patients.

Funder

National Cancer Institute

National Institutes of Health

Cancer Prevention Research Institute of Texas

Baylor Foundation

Baylor Scott & White Research Institute

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3