Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus

Author:

Banach Maureen1,Edholm Eva-Stina2,Gonzalez Xavier1,Benraiss Abdellatif3,Robert Jacques1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA

2. The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway

3. Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA

Abstract

Abstract The conditions that lead to antitumor or protumor functions of natural killer T (NKT) cells against mammalian tumors are only partially understood. Therefore, insights into the evolutionary conservation of NKT and their analogs—innate-like T (iT) cells—may reveal factors that contribute to tumor eradication. As such, we investigated the amphibian Xenopus laevis iT cells and interacting MHC class I-like (XNC or mhc1b.L) genes against ff-2 thymic lymphoid tumors. Upon ff-2 intraperitoneal transplantation into syngeneic tadpoles, two iT cell subsets iVα6 and iVα22, characterized by an invariant T-cell receptor α chain rearrangement (Vα6-Jα1.43 and Vα22-Jα1.32 respectively), were recruited to the peritoneum, concomitant with a decreased level of these transcripts in the spleen and thymus. To address the hypothesize that different iT cell subsets have distinct, possibly opposing, roles upon ff-2 tumor challenge, we determined whether ff-2 tumor growth could be manipulated by impairing Vα6 iT cells or by deleting their restricting element, the XNC gene, XNC10 (mhc1b10.1.L), on ff-2 tumors. Accordingly, the in vivo depletion of Vα6 iT cells using XNC10-tetramers enhanced tumor growth, indicating Vα6 iT cell-mediated antitumor activities. However, XNC10-deficient transgenic tadpoles that also lack Vα6 iT cells were resistant to ff-2 tumors, uncovering a potential new function of XNC10 besides Vα6 iT cell development. Furthermore, the CRISPR/Cas9-mediated knockout of XNC10 in ff-2 tumors broke the immune tolerance. Together, our findings demonstrate the relevance of XNC10/iT cell axis in controlling Xenopus tumor tolerance or rejection.

Funder

National Cancer Institute

National Institute of Allergy and Infectious Diseases

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3