Tumor somatic mutations also existing as germline polymorphisms may help to identify functional SNPs from genome-wide association studies

Author:

Gorlov Ivan P1ORCID,Xia Xiangjun1,Tsavachidis Spiridon1,Gorlova Olga Y1,Amos Christopher I1

Affiliation:

1. Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA

Abstract

Abstract We hypothesized that a joint analysis of cancer risk-associated single-nucleotide polymorphism (SNP) and somatic mutations in tumor samples can predict functional and potentially causal SNPs from GWASs. We used mutations reported in the Catalog of Somatic Mutations in Cancer (COSMIC). Confirmed somatic mutations were subdivided into two groups: (1) mutations reported as SNPs, which we call mutational/SNPs and (2) somatic mutations that are not reported as SNPs, which we call mutational/noSNPs. It is generally accepted that the number of times a somatic mutation is reported in COSMIC correlates with its selective advantage to tumors, with more frequently reported mutations being more functional and providing a stronger selective advantage to the tumor cell. We found that mutations reported ≥10 times in COSMIC—frequent mutational/SNPs (fmSNPs) are likely to be functional. We identified 12 cancer risk-associated SNPs reported in the Catalog of published GWASs at least 10 times as confirmed somatic mutations and therefore deemed to be functional. Additionally, we have identified 42 SNPs that are tightly linked (R2 ≥ 0.8) to SNPs reported in the Catalog of published GWASs as cancer risk associated and that are also reported as fmSNPs. As a result, 54 candidate functional/potentially causal cancer risk associated SNPs were identified. We found that fmSNPs are more likely to be located in evolutionarily conserved regions compared with cancer risk associated SNPs that are not fmSNPs. We also found that fmSNPs also underwent positive selection, which can explain why they exist as population polymorphisms.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3