Affiliation:
1. The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Max Born Crescent, Edinburgh, UK
2. EastCHEM School of Chemistry, The University of Edinburgh, The King’s Buildings, Edinburgh, UK
Abstract
Abstract
Background and Aims
The programmed softening occurring during fruit development requires scission of cell wall polysaccharides, especially pectin. Proposed mechanisms include the action of wall enzymes or hydroxyl radicals. Enzyme activities found in fruit extracts include pectate lyase (PL) and endo-polygalacturonase (EPG), which, in vitro, cleave de-esterified homogalacturonan in mid-chain by β-elimination and hydrolysis, respectively. However, the important biological question of whether PL exhibits action in vivo had not been tested.
Methods
We developed a method for specifically and sensitively detecting in-vivo PL products, based on Driselase digestion of cell wall polysaccharides and detection of the characteristic unsaturated product of PL action.
Key Results
In model in-vitro experiments, pectic homogalacturonan that had been partially cleaved by commercial PL was digested to completion with Driselase, releasing an unsaturated disaccharide (‘ΔUA–GalA’), taken as diagnostic of PL action. ΔUA–GalA was separated from saturated oligogalacturonides (EPG products) by electrophoresis, then subjected to thin-layer chromatography (TLC), resolving ΔUA–GalA from higher homologues. The ΔUA–GalA was confirmed as 4-deoxy-β-l-threo-hex-4-enopyranuronosyl-(1→4)-d-galacturonic acid by NMR spectroscopy. Driselase digestion of cell walls from ripe fruits of date (Phoenix dactylifera), pear (Pyrus communis), rowan (Sorbus aucuparia) and apple (Malus pumila) yielded ΔUA–GalA, demonstrating that PL had been acting in vivo in these fruits prior to harvest. Date-derived ΔUA–GalA was verified by negative-mode mass spectrometry, including collision-induced dissociation (CID) fragmentation. The ΔUA–GalA:GalA ratio from ripe dates was roughly 1:20 (mol mol–1), indicating that approx. 5 % of the bonds in endogenous homogalacturonan had been cleaved by in-vivo PL action.
Conclusions
The results provide the first demonstration that PL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.
Funder
UK Biotechnology and Biological Sciences Research Council
Publisher
Oxford University Press (OUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献