A prediction method for the individual serum concentration and therapeutic effect for optimizing adalimumab therapy in inflammatory bowel disease

Author:

Kimura Koji1ORCID,Yoshida Atsushi2

Affiliation:

1. Department of Clinical Evaluation of Drug Efficacy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 , Japan

2. Center for Gastroenterology and Inflammatory Bowel Disease, Ofuna Chuo Hospital , 6-2-24 Ofuna, Kamakura, Kanagawa 247-0056 , Japan

Abstract

Abstract Objectives Adalimumab (ADM) therapy is effective for inflammatory bowel disease (IBD), but a significant number of IBD patients lose response to ADM. Thus, it is crucial to devise methods to enhance ADM’s effectiveness. This study introduces a strategy to predict individual serum concentrations and therapeutic effects to optimize ADM therapy for IBD during the induction phase. Methods We predicted the individual serum concentration and therapeutic effect of ADM during the induction phase based on pharmacokinetic and pharmacodynamic (PK/PD) parameters calculated using the empirical Bayesian method. We then examined whether the predicted therapeutic effect, defined as clinical remission or treatment failure, matched the observed effect. Results Data were obtained from 11 IBD patients. The therapeutic effect during maintenance therapy was successfully predicted at 40 of 47 time points. Moreover, the predicted effects at each patient’s final time point matched the observed effects in 9 of the 11 patients. Conclusion This is the inaugural report predicting the individual serum concentration and therapeutic effect of ADM using the Bayesian method and PK/PD modelling during the induction phase. This strategy may aid in optimizing ADM therapy for IBD.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3