Trilobatin regulates glucose metabolism by ameliorating oxidative stress and insulin resistance in vivo and in vitro

Author:

He Ming1,Zhang Yuqing1,Zhai Yuhan1,Li Yaping1,Yang Guorui1,Yu Shaoxuan1,Xiao Haifang1ORCID,Song Yuanda1

Affiliation:

1. School of Agricultural Engineering and Food Science, Shandong University of Technology , Zibo, Shandong 255049 , China

Abstract

Abstract Objectives Trilobatin, a glycosylated dihydrochalcone, has been reported to have anti-diabetic properties. However, the underlying mechanism remains unexplained. Methods In this investigation, the regulation of trilobatin on glucose metabolism of insulin resistance (IR)-HepG2 cells and streptozocin (STZ)-induced mice and its mechanism were evaluated. Key findings Different doses of trilobatin (5, 10 and 20 μM) increased glucose consumption, glycogen content, hexokinase (HK), and pyruvate kinase (PK) activity in IR-HepG2 cells. Among them, the HK and PK activity in IR-HepG2 cells treated with 20 μM trilobatin were 1.84 and 2.05 times than those of the IR-group. The overeating, body and tissue weight, insulin levels, liver damage, and lipid accumulation of STZ-induced mice were improved after feeding with different doses of trilobatin (10, 50, and 100 mg/kg/d) for 4 weeks. Compared with STZ-induced mice, fasting blood glucose decreased by 61.11% and fasting insulin (FINS) increased by 48.6% after feeding trilobatin (100 mg/kg/d). Meanwhile, data from quantitative real-time polymerase chain reaction (qRT-PCR) revealed trilobatin ameliorated glycogen synthesis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway in IR-HepG2 cells and in STZ-induced mice. Furthermore, in vitro and in vivo experiments showed that trilobatin ameliorated oxidative stress by regulating the mRNA expression of nuclear erythroid-2 related factor 2 (Nrf2)/kelch-like ECH associated protein-1 (Keap-1) pathway as well as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1). Conclusions Our research reveals a novel pharmacological activity of trilobatin: regulating glucose metabolism through PI3K/Akt/GSK-3β and Nrf2/Keap-1 signaling pathways, improving insulin resistance and reducing oxidative stress. Trilobatin can be used as a reliable drug resource for the treatment of glucose metabolism disorders.

Funder

Shandong Provincial Natural Science Foundation, China

National Natural Science Foundation of China

Taishan Industry Leading Talent Project

Publisher

Oxford University Press (OUP)

Reference68 articles.

1. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats;Sundaram,2013

2. The ameliorative activity of Chrysobalanus orbicularis in streptozotocin-induced type II diabetes mellitus rat model;Ekakitie,2021

3. IRS1/PI3K/AKT pathway signal involved in the regulation of glycolipid metabolic abnormalities by Mulberry (Morus alba L.) leaf extracts in 3T3-L1 adipocytes;Meng,2020

4. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review;Ramasubbu,2023

5. Pancreastatin inhibitor PSTi8 prevents free fatty acid-induced oxidative stress and insulin resistance by modulating JNK pathway: in vitro and in vivo findings;Garg,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3