Homoharringtonine promotes non-small-cell lung cancer cell death via modulating HIF-1α/ERβ/E2F1 feedforward loop

Author:

Su Qi1,Ren Jiayan1,Chen Kun1,Leong Sze Wei2,Han Xu1,Li Na3,Wu Jianlin3,Zhang Yanmin14ORCID

Affiliation:

1. School of Pharmacy, Health Science Center, Xi'an Jiaotong University , No. 76, Yanta West Street, #54, Xi'an, Shaanxi 710061 , China

2. Department of Chemistry, Faculty of Science, Universiti Malaya , 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur , Malaysia

3. State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Avenida Wai Long, Taipa, Macau , China

4. State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering , No. 76, Yanta West Street, #54, Xi'an, Shaanxi 710061 , China

Abstract

Abstract Objectives Hypoxia conditions promote the adaptation and progression of non-small-cell lung cancer (NSCLC) via hypoxia-inducible factors (HIF). HIF-1α may regulate estrogen receptor β (ERβ) and promote the progression of NSCLC. The phytochemical homoharringtonine (HHT) exerts strong inhibitory potency on NSCLC, with molecular mechanism under hypoxia being elusive. Methods The effects of HHT on NSCLC growth were determined by cell viability assay, colony formation, flow cytometry, and H460 xenograft models. Western blotting, molecular docking program, site-directed mutagenesis assay, immunohistochemical assay, and immunofluorescence assay were performed to explore the underlying mechanisms of HHT-induced growth inhibition in NSCLC. Key findings HIF-1α/ERβ signaling-related E2F1 is highly expressed and contributes to unfavorable survival and tumor growth. The findings in hypoxic cells, HIF-1α overexpressing cells, as well as ERβ- or E2F1-overexpressed and knockdown cells suggest that the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC cell growth. HHT suppresses HIF-1α/ERβ/E2F1 signaling via the ubiquitin-proteasome pathway, which is dependent on the inhibition of the protein expression of HIF-1α and ERβ. Molecular docking and site-directed mutagenesis revealed that HHT binds to the GLU305 site of ERβ. HHT inhibits cell proliferation and colony formation and promotes apoptosis in both NSCLC cells and xenograft models. Conclusion The formation of the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC growth and reveals a novel molecular mechanism by which HHT induces cell death in NSCLC.

Funder

National Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Shaanxi Province Science

Shaanxi Province Science and Technology

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3