How to sample a seizure plant: the role of the visualization spatial distribution analysis of Lophophora williamsii as an example

Author:

Lin Jiaman12,Yun Keming1,Sun Qiran2,Xiang Ping2,Wu Lina12,Yang Shuo2,Dun Junling3,Fu Shanlin1,Chen Hang2

Affiliation:

1. School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security , Jinzhong , China

2. Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science , Shanghai , China

3. Shimadzu (China) Co., Ltd , Shanghai , China

Abstract

Abstract   Natural compounds in plants are often unevenly distributed, and determining the best sampling locations to obtain the most representative results is technically challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide the basis for formulating sampling guideline. For a succulent plant sample, ensuring the authenticity and in situ nature of the spatial distribution analysis results during MSI analysis also needs to be thoroughly considered. In this study, we developed a well-established and reliable MALDI-MSI method based on preservation methods, slice conditions, auxiliary matrices, and MALDI parameters to detect and visualize the spatial distribution of mescaline in situ in Lophophora williamsii. The MALDI-MSI results were validated using liquid chromatography–tandem mass spectrometry. Low-temperature storage at −80°C and drying of “bookmarks” were the appropriate storage methods for succulent plant samples and their flower samples, and cutting into 40 μm thick sections at −20°C using gelatin as the embedding medium is the appropriate sectioning method. The use of DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as an auxiliary matrix and a laser intensity of 45 are favourable MALDI parameter conditions for mescaline analysis. The region of interest semi-quantitative analysis revealed that mescaline is concentrated in the epidermal tissues of L. williamsii as well as in the meristematic tissues of the crown. The study findings not only help to provide a basis for determining the best sampling locations for mescaline in L. williamsii, but they also provide a reference for the optimization of storage and preparation conditions for raw plant organs before MALDI detection. Key Points

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shanghai

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health,Physical and Theoretical Chemistry,Anthropology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Pathology and Forensic Medicine,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imaging plant metabolism in situ;Journal of Experimental Botany;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3