A consistent methodology for forensic photogrammetry scanning of human remains using a single handheld DSLR camera

Author:

Ujvári Zsolt1,Metzger Máté1,Gárdonyi Gergely2

Affiliation:

1. Directorate of Forensic Expertise, Hungarian Institute for Forensic Sciences , H-1087 Budapest Mosonyi str. 9 , Hungary

2. Department of Forensic Sciences, National University of Public Service , H-1083 Budapest, Ludovika square 2. , Hungary

Abstract

Abstract   Due to increasingly capable algorithms and more available processing power, photogrammetry is becoming a simple, cheap, and accurate alternative to 3D optical surface scanning. With adequate application, it can be a swift documentation technique for reconstructing the geometry and body surface of deceased persons in autopsies or other forensic medical examinations. Sufficiently easy and swift 3D documentation techniques may allow 3D imaging technologies to become part of the daily routine of any forensic medical examiner or other medical personnel. This paper presents a consistent and systematic photographing methodology (as an alternative to automated or intuitive methods) for photogrammetry scanning of human remains. Although it requires manual photography, the methods presented in this paper offer a swift and easy way to capture an accurate 3D model of human remains under almost any conditions. Four different photographing procedures were tested on four subjects: (i) a systematic circular technique with 100 photos, (ii) a systematic circular technique with 50 photos, (iii) a technique loosely mimicking cameras mounted on a postmortem CT device with 98 photos, and (iv) a technique mimicking cameras mounted on a postmortem CT device with 49 photos. Measurement accuracy was tested with the aid of six adhesive control points placed at approximately the same locations on each subject. Five different distances defined by these control points were measured and compared to the measurements taken by hand. 3D photogrammetry meshes created using these techniques were also compared with point clouds acquired using a 3D laser scanner. We found that a carefully composed, tested, and systematic photographing procedure significantly improved the quality of the photogrammetry models. In terms of relative difference compared to the hand measurements, both Techniques 1 and 2 produced close results, with an average relative difference of 0.160% and 0.197% and a maximum relative difference of 0.481% and 0.481%, respectively, while models reconstructed from images taken using Techniques 3 and 4 seemed to be much less accurate, with an average relative difference of 0.398% and 0.391% and a maximum relative difference as high as 1.233% and 1.139%, respectively. This study highlights the importance of a scientifically tested methodology for obtaining high-quality 3D models in forensic applications. Key points

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health,Physical and Theoretical Chemistry,Anthropology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Pathology and Forensic Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3