Effects of Iontophoresis Current Magnitude and Duration on Dexamethasone Deposition and Localized Drug Retention

Author:

Anderson Carter R1,Morris Russell L2,Boeh Stephen D3,Panus Peter C4,Sembrowich Walter L5

Affiliation:

1. CR Anderson, MS, is President and Chief Technology Officer, Birch Point Medical Inc, Oakdale, Minn

2. RL Morris, PhD, Vice President of Operations, Birch Point Medical Inc

3. SD Boeh, MS, is Vice President of Clinical and Regulatory Affairs, Birch Point Medical Inc

4. PC Panus, PT, PhD, is Associate Professor, Department of Physical Therapy, College of Public and Allied Health, East Tennessee State University, Johnson City, Tenn

5. WL Sembrowich, PhD, is Chairman and CEO, Birch Point Medical Inc, 473 Hayward Ave N, Oakdale, MN 55128 (USA).

Abstract

Abstract Background and Purpose. Iontophoresis is a process that uses bipolar electric fields to propel molecules across intact skin and into underlying tissue. The purpose of this study was to describe and experimentally examine an iontophoresis drug delivery model. Subjects and Methods. A mechanistic model describing delivery was studied in vitro using agarose gels and was further tested in vivo by evaluation of cutaneous vasoconstriction following iontophoresis in human volunteers. Results. In vitro cathodic iontophoresis at 4 mA and 0.1 mA each delivered dexamethasone/dexamethasone phosphate (DEX/DEX-P) from a 4-mg/mL donor solution to a depth of 12 mm following a 40 mA·minute stimulation dosage. Delivery of DEX/DEX-P to at least the depths of the vasculature in humans was confirmed by observation of cutaneous vasoconstriction. This cutaneous vasoconstriction was longer lasting and greater in magnitude when using low-current, long-duration (∼0.1 mA) iontophoresis compared with equivalent dosages delivered by higher-current, shorter-duration (1.5–4.0 mA) iontophoresis. Discussion and Conclusion. From data gathered with the gel model, the authors developed a model of a potential mechanism of drug depot formation following iontophoresis. The authors believe this drug depot formation to be due to exchange of drug ions for chloride ions as the ionic current carriers. Furthermore, diffusion, not magnitude of current, appears to govern the depth of drug penetration. Although the authors did not address the efficacy of the drug delivered, the results of human experiments suggest that current magnitude and duration should be considered as factors in treating musculoskeletal dysfunctions with iontophoresis using DEX/DEX-P at a concentration of 4 mg/mL.

Publisher

Oxford University Press (OUP)

Subject

Physical Therapy, Sports Therapy and Rehabilitation

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3