Modeling the accident prediction for at-grade highway-rail crossings

Author:

Yang Xue1,Li Joshua Qiang2,Zhang Aonan (Allen)3,Zhan You (Jason)3

Affiliation:

1. Oklahoma State University School of Civil and Environmental Engineering, , Stillwater OK, 74078 USA

2. Oklahoma State University Associate Professor/Williams Professor, School of Civil and Environmental Engineering, , Stillwater, OK, 74078 USA

3. Southwest Jiaotong University School of Civil Engineering, , Chengdu, P. R. China 610031

Abstract

Abstract Since accidents at highway-rail at-grade crossings (HRGCs) are often catastrophic, safety prediction and evaluation at such locations are of great importance. In this paper, at-grade crossing inventory data and historical accident data were obtained from the Federal Railroad Administration (FRA’s) Office of Safety online databases. The HRGC railroad and highway characteristics were selected as the influencing variables. Considering HRGC accidents are over-dispersed count data with excessive zeros, six count data models, including the Poisson model, negative binomial model (NB), zero-inflated Poisson model (ZIP), zero-inflated negative binomial model (ZINB), hurdle Poisson (HP) model, and hurdle negative binomial model (HNB) were investigated and developed for accident prediction. The ZINB model outperformed the other five models in terms of the goodness-of-fit, zero inflations, and statistical significance of factors. The most significant contributing factors in the ZINB model included the maximum timetabled speed of train, exposure-related variables such as total through trains, highway traffic volume, rural or urban area, and the type of control devices at HRGCs, followed by the minimum speed of train, highway paved or not, and the number of traffic lanes. This study could assist decision-makers with more robust safety evaluation at highway-rail at-grade crossings.

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3