Research on influencing factors of asphalt pavement International Roughness Index (IRI) based on ensemble learning

Author:

Luo Zhiwei12,Zhan You12,Liu Yang3,Zhang Allen12ORCID,Lin Xiuquan12,Zhang Yurong12

Affiliation:

1. Southwest Jiaotong University School of Civil Engineering, , Chengdu, Sichuan 610031, China

2. Highway Engineering Key Laboratory of Sichuan Province , Chengdu, Sichuan 610031, China

3. Oklahoma State University School of Civil & Environmental Engineering, , Stillwater, OK 74078, USA

Abstract

Abstract The International Roughness Index (IRI) is one of the most commonly used indicators to measure pavement surface smoothness. This paper uses the data obtained from the Specific Pavement Studies-3 (SPS-3) of the Long Term Pavement Performance (LTPP) program to study the influencing factors of the International Roughness Index of asphalt pavement. Pavement age, precipitation, freezing index, temperature, traffic volume, traffic load, and rutting depth are investigated to evaluate the effectiveness of four preventive maintenance treatments on asphalt pavement surface roughness. The pavement roughness model is established based on the XGBoost algorithm, with a training R2 of 0.96 and a testing R2 of 0.82. The results show that among the four preservation treatments, the IRI of thin overlay is the lowest. Annual Average Daily Traffic (AADT) is identified as the most significant factor for IRI evaluation, accounting for the most contribution to pavement surface roughness, followed by precipitation, rutting depth, temperature, etc.

Publisher

Oxford University Press (OUP)

Reference32 articles.

1. Analysis of factors impacting on asphalt concrete pavement evenness of urban roads;Baoyuan;Forest Engineering,2003

2. A gentle introduction to the gradient boosting algorithm for machine learning;Brownlee;Machine Learning Mastery,2016

3. Xgboost: A scalable tree boosting system’. CoRR, abs/1603.02754;Chen,2016

4. Influencing factors and testing methods of asphalt pavement evenness;Chengzhi;Communications Science and Technology Heilongjiang,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3