Adult Paederus fuscipes (Coleoptera: Staphylinidae) Beetles Overcome Water Loss With Increased Total Body Water Content, Energy Metabolite Storage, and Reduced Cuticular Permeability: Age, Sex-Specific, and Mating Status Effects on Desiccation

Author:

Wang Chia-Yu1,Bong Lee-Jin1ORCID,Neoh Kok-Boon1

Affiliation:

1. Department of Entomology, National Chung Hsing University, Taichung, Taiwan

Abstract

Abstract The ability of Paederus beetles to resist desiccation stress is vital to their adaptability in various ecological niches. How water relations and their response to desiccation vary among adult beetles of different age, sex, and mating status is unclear. We examined the water relations of adult Paederus fuscipes Curtis and the mechanisms used to reduce desiccation stress. One-day-old beetles had an exceptionally high percent total body water (%TBW) content and tolerated a high level of %TBW loss. Newly emerged beetles contained a high level of trehalose and 40 to 60% lipid content of their total dry mass, which allowed them to endure desiccation. Beetles that were 10 wk old and older exhibited reduced cuticular permeability. Glucose, glycogen, and lipid contents were crucial throughout most of the adult life span, as they helped compensate for water loss via increased water vapor absorption and metabolic water. In particular, the accumulation of lipid after mating was significant and may further confer tolerance to water loss. The effect of melanization on the desiccation tolerance of beetles was not significant. Females had better tolerance in response to desiccation stress compared with males. We suggest that the observed differences between sexes likely were a function of water relations and an effect of energy metabolite reserves. However, the mortality of females at 24-h postdesiccating stage was marginally significant compared with males. These results demonstrate that P. fuscipes adults prevent dehydration using multiple mechanisms that collectively reduce desiccation stress and increase dehydration tolerance.

Funder

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3