Assessment of heart-substructures auto-contouring accuracy for application in heart-sparing radiotherapy for lung cancer

Author:

Marchant Tom12ORCID,Price Gareth23,McWilliam Alan23,Henderson Edward23,McSweeney Dónal23,van Herk Marcel23ORCID,Banfill Kathryn24,Schmitt Matthias56ORCID,King Jennifer4,Barker Claire4,Faivre-Finn Corinne24

Affiliation:

1. Christie Medical Physics & Engineering, The Christie NHS Foundation Trust , Manchester, M20 4BX, United Kingdom

2. Division of Cancer Sciences, The University of Manchester , Manchester, M13 9PL, United Kingdom

3. Radiotherapy Related Research, The Christie NHS Foundation Trust , Manchester, M20 4BX, United Kingdom

4. Department of Clinical Oncology, The Christie NHS Foundation Trust , Manchester, M20 4BX, United Kingdom

5. Division of Cardiovascular Sciences, The University of Manchester , Manchester, M13 9PL, United Kingdom

6. Department of Cardiology, Manchester University NHS Foundation Trust , Manchester, M13 9WL, United Kingdom

Abstract

Abstract Objectives We validated an auto-contouring algorithm for heart substructures in lung cancer patients, aiming to establish its accuracy and reliability for radiotherapy (RT) planning. We focus on contouring an amalgamated set of subregions in the base of the heart considered to be a new organ at risk, the cardiac avoidance area (CAA), to enable maximum dose limit implementation in lung RT planning. Methods The study validates a deep-learning model specifically adapted for auto-contouring the CAA (which includes the right atrium, aortic valve root, and proximal segments of the left and right coronary arteries). Geometric, dosimetric, quantitative, and qualitative validation measures are reported. Comparison with manual contours, including assessment of interobserver variability, and robustness testing over 198 cases are also conducted. Results Geometric validation shows that auto-contouring performance lies within the expected range of manual observer variability despite being slightly poorer than the average of manual observers (mean surface distance for CAA of 1.6 vs 1.2 mm, dice similarity coefficient of 0.86 vs 0.88). Dosimetric validation demonstrates consistency between plans optimized using auto-contours and manual contours. Robustness testing confirms acceptable contours in all cases, with 80% rated as “Good” and the remaining 20% as “Useful.” Conclusions The auto-contouring algorithm for heart substructures in lung cancer patients demonstrates acceptable and comparable performance to human observers. Advances in knowledge Accurate and reliable auto-contouring results for the CAA facilitate the implementation of a maximum dose limit to this region in lung RT planning, which has now been introduced in the routine setting at our institution.

Funder

UK National Institute for Health and Care Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3