Specialist learning curves and clinical feasibility of introducing a new MRI grading system for skeletal maturity

Author:

De Luca Francesca12ORCID,Finnbogason Thröstur3,Kvist Ola34ORCID

Affiliation:

1. Department of Clinical Neuroscience, Karolinska Institute , Tomtebodavägen 18 a, 171 77 Stockholm, Sweden

2. Department of Radiology, Karolinska University Hospital , Eugeniavägen 3, 171 64, Stockholm, Sweden

3. Department of Pediatric Radiology, Karolinska University Hospital , Eugeniavägen 23, 171 64, Stockholm, Sweden

4. Department of Women’s and Children’s Health, Karolinska Institute , Tomtebodavägen 18a, 171 77, Stockholm, Sweden

Abstract

Abstract Objective MRI is an emerging imaging modality to assess skeletal maturity. This study aimed to chart the learning curves of paediatric radiologists when using an unfamiliar MRI grading system of skeletal maturity and to assess the clinical feasibility of implementing said system. Methods 958 healthy paediatric volunteers were prospectively included in a dual-facility study. Each subject underwent a conventional MRI scan at 1.5 T. To perform the image reading, the participants were grouped into five subsets (subsets 1-5) of equal size (n∼192) in chronological order for scan acquisition. Two paediatric radiologists (R1-2) with different levels of MRI experience, both of whom were previously unfamiliar with the study’s MRI grading system, independently evaluated the subsets to assess skeletal maturity in five different growth plate locations. Congruent cases at blinded reading established the consensus reading. For discrepant cases, the consensus reading was obtained through an unblinded reading by a third paediatric radiologist (R3), also unfamiliar with the MRI grading system. Further, R1 performed a second blinded image reading for all included subjects with a memory wash-out of 180 days. Weighted Cohen kappa was used to assess interreader reliability (R1 vs consensus; R2 vs consensus) at non-cumulative and cumulative time points, as well as interreader (R1 vs R2) and intrareader (R1 vs R1) reliability at non-cumulative time points. Results Mean weighted Cohen kappa values for each pair of blinded readers compared to consensus reading (interreader reliability, R1-2 vs consensus) were ≥0.85, showing a strong to almost perfect interreader agreement at both non-cumulative and cumulative time points and in all growth plate locations. Weighted Cohen kappa values for interreader (R1 vs R2) and intrareader reliability (R1 vs R1) were ≥0.72 at non-cumulative time points, with values ≥0.82 at subset 5. Conclusions Paediatric radiologists’ clinical confidence when introduced to a new MRI grading system for skeletal maturity was high from the outset of their learning curve, despite the radiologists’ varying levels of work experience with MRI assessment. The MRI grading system for skeletal maturity investigated in this study is a robust clinical method when used by paediatric radiologists and can be used in clinical practice. Advances in knowledge Radiologists with fellowship training in paediatric radiology experienced no learning curve progress when introduced to a new MRI grading system for skeletal maturity and achieved desirable agreement from the first time point of the learning curve. The robustness of the investigated MRI grading system was not affected by the earlier different levels of MRI experience among the readers.

Funder

national board of health in Sweden

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3