Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital

Author:

Kulkarni Chaitanya12,Sherkhane Umesh23,Jaiswar Vinay3,Mithun Sneha23,Mysore Siddu Dinesh1,Rangarajan Venkatesh3,Dekker Andre2,Traverso Alberto24,Jha Ashish3,Wee Leonard2ORCID

Affiliation:

1. Philips Research, Philips Innovation Campus , Bengaluru, Karnataka 560045, India

2. Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+ , Maastricht 6229 ET, The Netherlands

3. Department of Nuclear Medicine and Radiology, Tata Memorial Hospital Mumbai , Mumbai, Maharashtra 400012, India

4. Faculty of Medicine, University Vita Salute, San Raffaele Hospital , 20132 Milan, Italy

Abstract

Abstract Objectives Radiation therapy for lung cancer requires a gross tumour volume (GTV) to be carefully outlined by a skilled radiation oncologist (RO) to accurately pinpoint high radiation dose to a malignant mass while simultaneously minimizing radiation damage to adjacent normal tissues. This is manually intensive and tedious however, it is feasible to train a deep learning (DL) neural network that could assist ROs to delineate the GTV. However, DL trained on large openly accessible data sets might not perform well when applied to a superficially similar task but in a different clinical setting. In this work, we tested the performance of DL automatic lung GTV segmentation model trained on open-access Dutch data when used on Indian patients from a large public tertiary hospital, and hypothesized that generic DL performance could be improved for a specific local clinical context, by means of modest transfer-learning on a small representative local subset. Methods X-ray computed tomography (CT) series in a public data set called “NSCLC-Radiomics” from The Cancer Imaging Archive was first used to train a DL-based lung GTV segmentation model (Model 1). Its performance was assessed using a different open access data set (Interobserver1) of Dutch subjects plus a private Indian data set from a local tertiary hospital (Test Set 2). Another Indian data set (Retrain Set 1) was used to fine-tune the former DL model using a transfer learning method. The Indian data sets were taken from CT of a hybrid scanner based in nuclear medicine, but the GTV was drawn by skilled Indian ROs. The final (after fine-tuning) model (Model 2) was then re-evaluated in “Interobserver1” and “Test Set 2.” Dice similarity coefficient (DSC), precision, and recall were used as geometric segmentation performance metrics. Results Model 1 trained exclusively on Dutch scans showed a significant fall in performance when tested on “Test Set 2.” However, the DSC of Model 2 recovered by 14 percentage points when evaluated in the same test set. Precision and recall showed a similar rebound of performance after transfer learning, in spite of using a comparatively small sample size. The performance of both models, before and after the fine-tuning, did not significantly change the segmentation performance in “Interobserver1.” Conclusions A large public open-access data set was used to train a generic DL model for lung GTV segmentation, but this did not perform well initially in the Indian clinical context. Using transfer learning methods, it was feasible to efficiently and easily fine-tune the generic model using only a small number of local examples from the Indian hospital. This led to a recovery of some of the geometric segmentation performance, but the tuning did not appear to affect the performance of the model in another open-access data set. Advances in knowledge Caution is needed when using models trained on large volumes of international data in a local clinical setting, even when that training data set is of good quality. Minor differences in scan acquisition and clinician delineation preferences may result in an apparent drop in performance. However, DL models have the advantage of being efficiently “adapted” from a generic to a locally specific context, with only a small amount of fine-tuning by means of transfer learning on a small local institutional data set.

Funder

Netherlands Research Council

Indian Ministry of Electronics and Information Technology

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3