Three-dimensional dose prediction based on deep convolutional neural networks for brain cancer in CyberKnife: accurate beam modelling of homogeneous tissue

Author:

Miao Yuchao12,Ge Ruigang3,Xie Chuanbin3,Dai Xiangkun3,Liu Yaoying4,Qu Baolin3,Li Xiaobo2,Zhang Gaolong4,Xu Shouping1ORCID

Affiliation:

1. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, 100021, China

2. Department of Radiation Oncology, Fujian Medical University Union Hospital , Fuzhou, Fujian, 350001, China

3. Department of Radiation Oncology, the First Medical Center of the People’s Liberation Army General Hospital , Beijing, 100853, China

4. School of Physics, Beihang University , Beijing, 102206, China

Abstract

Abstract Objectives Accurate beam modelling is essential for dose calculation in stereotactic radiation therapy (SRT), such as CyberKnife treatment. However, the present deep learning methods only involve patient anatomical images and delineated masks for training. These studies generally focus on traditional intensity-modulated radiation therapy (RT) plans. Nevertheless, this paper aims to develop a deep CNN-based method for CyberKnife plan dose prediction about brain cancer patients. It utilized modelled beam information, target delineation, and patient anatomical information. Methods This study proposes a method that adds beam information to predict the dose distribution of CyberKnife in brain cases. A retrospective dataset of 88 brain and abdominal cancer patients treated with the Ray-tracing algorithm was performed. The datasets include patients’ anatomical information (planning CT), binary masks for organs at risk (OARs) and targets, and clinical plans (containing beam information). The datasets were randomly split into 68, 6, and 14 brain cases for training, validation, and testing, respectively. Results Our proposed method performs well in SRT dose prediction. First, for the gamma passing rates in brain cancer cases, with the 2 mm/2% criteria, we got 96.7% ± 2.9% for the body, 98.3% ± 3.0% for the planning target volume, and 100.0% ± 0.0% for the OARs with small volumes referring to the clinical plan dose. Secondly, the model predictions matched the clinical plan’s dose-volume histograms reasonably well for those cases. The differences in key metrics at the target area were generally below 1.0 Gy (approximately a 3% difference relative to the prescription dose). Conclusions The preliminary results for selected 14 brain cancer cases suggest that accurate 3-dimensional dose prediction for brain cancer in CyberKnife can be accomplished based on accurate beam modelling for homogeneous tumour tissue. More patients and other cancer sites are needed in a further study to validate the proposed method fully. Advances in knowledge With accurate beam modelling, the deep learning model can quickly generate the dose distribution for CyberKnife cases. This method accelerates the RT planning process, significantly improves its operational efficiency, and optimizes it.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3