Trophic niche segregation in a guild of top predators within the Mediterranean Basin

Author:

Ramellini Samuele1ORCID,Crepet Emanuele1ORCID,Lapadula Stefano1ORCID,Romano Andrea1ORCID

Affiliation:

1. Department of Environmental Science and Policy, University of Milan , Milan , Italy

Abstract

Abstract Niche theory predicts that closely related and ecologically similar species with overlapping distribution ranges can coexist through resource partitioning that limits interspecific competition. However, studies examining the mechanisms promoting coexistence of top predators at a large geographical scale are still scant. Here, we describe the foraging ecology of 3 sympatric owl species (Northern long-eared owl [Asio otus], Tawny owl [Strix aluco], Eurasian eagle owl [Bubo bubo]) in the Mediterranean Basin. We review 160 studies reporting diet information (212,236 vertebrate preys) and investigate among-species differences in diet metrics (diversity, evenness, prey size, and proportion of mammals) and their variation along geographical and environmental gradients. Moreover, we test whether diet metrics differ in presence or absence of the other predators. All the 3 species mainly rely on small mammals, but they significantly differ in diet metrics. The smallest predator (i.e., long-eared owl) shows a higher level of specialism on small mammals (highest proportion but lowest diversity of mammals in the diet) compared to the larger ones. In addition, mean prey size significantly increases with predator body size (long-eared owl < tawny owl < eagle owl). Finally, interspecific competition results in an increase of diet diversity and evenness in the long-eared owl, and species’ diet also varies in response to environmental factors. The 3 species thus segregate along several dietary niche axes over a large spatial scale and according to both morphological characteristics (i.e., body size) and environmental variables. Such dietary niche segregation may adaptively buffer interspecific competition costs, ultimately allowing coexistence.

Publisher

Oxford University Press (OUP)

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3