SYMMETRIC MONOIDAL G-CATEGORIES AND THEIR STRICTIFICATION

Author:

Guillou Bertrand J1,May J Peter2,Merling Mona3,Osorno Angélica M4

Affiliation:

1. Department of Mathematics, The University of Kentucky, 715 Patterson Office Tower, Patterson Drive, Lexington, KY 40506, USA

2. Department of Mathematics, The University of Chicago, University Avenue, Chicago, IL 60637, USA

3. Department of Mathematics, The University of Pennsylvania, David Rittenhouse Lab. 209 South 33rd Street, Philadelphia, PA 19104, USA

4. Department of Mathematics, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA

Abstract

Abstract We give an operadic definition of a genuine symmetric monoidal $G$-category, and we prove that its classifying space is a genuine $E_\infty $$G$-space. We do this by developing some very general categorical coherence theory. We combine results of Corner and Gurski, Power and Lack to develop a strictification theory for pseudoalgebras over operads and monads. It specializes to strictify genuine symmetric monoidal $G$-categories to genuine permutative $G$-categories. All of our work takes place in a general internal categorical framework that has many quite different specializations. When $G$ is a finite group, the theory here combines with previous work to generalize equivariant infinite loop space theory from strict space level input to considerably more general category level input. It takes genuine symmetric monoidal $G$-categories as input to an equivariant infinite loop space machine that gives genuine $\Omega $-$G$-spectra as output.

Funder

Simons Collaboration

NSF

Woodrow Wilson Career Enhancement Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Chain functors and homology theories;Anderson,1971

2. Biased permutative equivariant categories;Bangs

3. Multitensor lifting and strictly unital higher category theory;Batanin;Theory Appl. Categ.,2013

4. Homotopy coherent category theory and $A_{\infty }$-structures in monoidal categories;Batanin;J. Pure Appl. Algebra,1998

5. Two-dimensional monad theory;Blackwell;J. Pure Appl. Algebra,1989

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models of G–spectra as presheaves of spectra;Algebraic & Geometric Topology;2024-06-28

2. Genuine versus naïve symmetric monoidal $G$-categories;Documenta Mathematica;2023-11-14

3. On distributivity in higher algebra I: the universal property of bispans;Compositio Mathematica;2023-09-18

4. Multiplicative equivariant K-theory and the Barratt-Priddy-Quillen theorem;Advances in Mathematics;2023-02

5. Smashing localizations in equivariant stable homotopy;Journal of Homotopy and Related Structures;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3