Quantum Cohomology and Closed-String Mirror Symmetry for Toric Varieties

Author:

Smith Jack1

Affiliation:

1. St. John’s College, Cambridge, CB2 1TP, UK

Abstract

AbstractWe give a short new computation of the quantum cohomology of an arbitrary smooth (semiprojective) toric variety $X$, by showing directly that the Kodaira–Spencer map of Fukaya–Oh–Ohta–Ono defines an isomorphism onto a suitable Jacobian ring. In contrast to previous results of this kind, $X$ need not be compact. The proof is based on the purely algebraic fact that a class of generalized Jacobian rings associated to $X$ are free as modules over the Novikov ring. When $X$ is monotone the presentation we obtain is completely explicit, using only well-known computations with the standard complex structure.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference52 articles.

1. Mirror symmetry and $T$-duality in the complement of an anticanonical divisor;Auroux;J. Gökova Geom. Topol. GGT,2007

2. Quantum cohomology rings of toric manifolds;Batyrev,1993

3. Quantum structures for Lagrangian submanifolds;Biran

4. Lagrangian topology and enumerative geometry;Biran;Geom. Topol. Ser.,2012

5. Open Gromov–Witten invariants, mirror maps, and Seidel representations for toric manifolds;Chan;Duke Math. J.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bulk-Deformed Potentials for Toric Fano Surfaces, Wall-Crossing, and Period;International Mathematics Research Notices;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3