THE AVERAGE NUMBER OF SUBGROUPS OF ELLIPTIC CURVES OVER FINITE FIELDS

Author:

Perret-Gentil Corentin1

Affiliation:

1. Centre de Recherches Mathématiques, Université de Montréal, Canada

Abstract

Abstract By adapting the technique of David, Koukoulopoulos and Smith for computing sums of Euler products, and using their interpretation of results of Schoof à la Gekeler, we determine the average number of subgroups (or cyclic subgroups) of an elliptic curve over a fixed finite field of prime size. This is in line with previous works computing the average number of (cyclic) subgroups of finite abelian groups of rank at most $2$. A required input is a good estimate for the divisor function in both short interval and arithmetic progressions, that we obtain by combining ideas of Ivić–Zhai and Blomer. With the same tools, an asymptotic for the average of the number of divisors of the number of rational points could also be given.

Funder

Natural Sciences and Engineering Research Council of Canada

Radziwill’s Natural Sciences and Engineering Research Council Discovery Grant

Canada Research Chairs

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Elliptic curves, random matrices and orbital integrals;Achter;Pacific J. Math.,2017

2. On the average value of divisor sums in arithmetic progressions;Banks;Int. Math. Res. Not.,2005

3. The average value of divisor sums in arithmetic progressions;Blomer;Q. J. Math.,2007

4. On the number of subgroups of finite Abelian groups;Bhowmik,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3