BLOCKS WITH NORMAL ABELIAN DEFECT AND ABELIAN p′ INERTIAL QUOTIENT

Author:

Benson David1,Kessar Radha2,Linckelmann Markus2

Affiliation:

1. Institute of Mathematics, Fraser Noble Building, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United Kingdom

2. School of Mathematics, Computer Science & Engineering, Department of Mathematics, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom

Abstract

Abstract Let $k$ be an algebraically closed field of characteristic $p$, and let ${\mathcal{O}}$ be either $k$ or its ring of Witt vectors $W(k)$. Let $G$ be a finite group and $B$ a block of ${\mathcal{O}} G$ with normal abelian defect group and abelian $p^{\prime}$ inertial quotient $L$. We show that $B$ is isomorphic to its second Frobenius twist. This is motivated by the fact that bounding Frobenius numbers is one of the key steps towards Donovan’s conjecture. For ${\mathcal{O}}=k$, we give an explicit description of the basic algebra of $B$ as a quiver with relations. It is a quantized version of the group algebra of the semidirect product $P\rtimes L$.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference11 articles.

1. Nonprincipal blocks with one simple module;Benson;Quart. J. Math. (Oxford),2004

2. Blocks inequivalent to their Frobenius twists;Benson;J. Algebra,2007

3. Donovan’s conjecture and blocks with abelian defect groups;Eaton,2019

4. Towards Donovan’s conjecture for abelian defect groups;Eaton,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure of blocks with normal defect and abelian inertial quotient;Forum of Mathematics, Sigma;2023

2. Arbitrarily large Morita Frobenius numbers;Algebra & Number Theory;2022-11-29

3. Arbitrarily large O-Morita Frobenius numbers;Journal of Algebra;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3