Affiliation:
1. Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3-5, D-37073 Göttingen, Germany
Abstract
Abstract
Numerical experiments suggest that there are more prime factors in certain arithmetic progressions than others. Greg Martin conjectured that the function $\sum _{n\leq x, n\equiv 1 \bmod 4} \omega (n)-\sum _{n\leq x, n\equiv 3 \bmod 4} \omega (n)$ will attain a constant sign as $x\rightarrow \infty $, where $\omega (n)$ is the number of distinct prime factors of $n$. In this paper, we prove explicit formulas for both $\sum _{n\leq x}\chi (n)\Omega (n)$ and $\sum _{n\leq x}\chi (n)\omega (n)$ under some reasonable assumptions, where $\chi (n)$ is a Dirichlet character and $\Omega (n)$ is the number of prime factors of $n$ counted with multiplicity. Our results give strong evidence for Martin’s conjecture.
Publisher
Oxford University Press (OUP)
Reference21 articles.
1. Limiting distributions of the classical error terms of prime number theory;Akbary;Quarterly J. Math.,2014
2. Lettre de M. le professeur Tchébyshev á M. fuss, Sur un nouveau théoreme rélatif aux nombres premiers contenus dans la formes $4n + \textrm{et} 4n + 3$;Chebyshev;Bull. Cl. Phys.-Math. Acad. Imp. Sci. St.-Petersbg.,1853
3. The Gaussian law of errors in the theory of additive number theoretic functions;Erdős;Amer. J. Math.,1940
4. Chebyshev’s bias for products of two primes;Ford;Exp. Math.,2010
5. Mean values of the Riemann zeta-function and its derivatives;Gonek;Invent. Math.,1984
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献