Enzymatic Debridement of Porcine Burn Wounds via a Novel Protease, SN514

Author:

Stone Randolph1ORCID,Jockheck-Clark Angela R1,Natesan Shanmugasundaram1,Rizzo Julie A2,Wienandt Nathan A3,Scott Laura L4,Larson David A1,Wall John T1,Holik Michelle A1,Shaffer Lucy J1,Park Nancy1,Jovanovic Aleksa2,Tetens Shannon5,Roche Eric D5,Shi Lei5,Christy Robert J1

Affiliation:

1. Department of Burn and Soft Tissue Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

2. US Army Burn Center, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

3. Comparative Pathology, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

4. Epidemiology and Biostatistics, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

5. Department of Biologics and Regenerative Medicine, Sam Houston, Texas

Abstract

Abstract Necrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent. In this paper, a proprietary debridement gel (SN514) was evaluated for the ability to debride both deep-partial thickness (DPT) and full-thickness burn wounds using an established porcine thermal injury model. Burn wounds were treated daily for 4 days and visualized with both digital imaging and laser speckle imaging. Strip biopsies were taken at the end of the procedure. Histological analyses confirmed a greater debridement of the porcine burn wounds by SN514 than the vehicle-treated controls. Laser speckle imaging detected significant increases in the perfusion status after 4 days of SN514 treatment on DPT wounds. Importantly, histological analyses and clinical observations suggest that SN514 gel treatment did not damage uninjured tissue as no edema, erythema, or inflammation was observed on intact skin surrounding the treated wounds. A blinded evaluation of the digital images by a burn surgeon indicated that SN514 debrided more necrotic tissue than the control groups after 1, 2, and 3 days of treatment. Additionally, SN514 gel was evaluated using an in vitro burn model that used human discarded skin. Treatment of human burned tissue with SN514 gel resulted in greater than 80% weight reduction compared with untreated samples. Together, these data demonstrate that SN514 gel is capable of debriding necrotic tissue and suggest that SN514 gel could be a useful option for austere conditions, such as military multi-domain operations and prolonged field care scenarios.

Funder

Combat Casualty Care Research Program

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3